توپولوژی شاخهای از ریاضیات است که به بررسی فضاهای توپولوژیک میپردازد.
تعریف
مجموعه X به همراه گردایه T از زیرمجموعههای X را یک فضای توپولوژیکی گویند هر گاه:
مجموعه تهی و X عضو T باشند.
اجتماع هر گردایه از مجموعههای عضو T در T قرار دارد.
اشتراک هر دو مجموعه عضو T در T قرار دارد.
مجموعه T را یک توپولوژی روی X میگوییم. همچنین اعضای T مجموعههای باز در X و متتم آنها مجموعههای بسته در X هستند.
اعضای X را نقاط مینامیم.
ارتباط بین دو فضای توپولوژیک
روی یک مجموعه مانند X توپولوژیهای متعددی میتوان تعریف کرد (حداقل دو توپولوژی گسسته و ناگسسته را میتوانیم روی X تعریف کنیم). حال فرض کنید T1 و T2 دو توپولوژی روی X هستند. اگر هر عضو T1، عضوی از T2 نیز باشد آنگاه میگوییم T2 ظریفتر از T1 است. در این صورت اثباتی که برای وجود یک مجموعه باز معین ارائه میدهیم در مورد توپولوژی ظریفتر هم برقرار است.
توابع پیوسته
فرض میکنیم (X,T)و(Y,U) دو فضای توپولوژیک دلخواه باشند:
تابع f:X − > Y در نقطه? x واقع در X را پیوسته گوییم، هرگاه به ازای هر مجموعه? باز شامل f(x) مانند YB، مجموعه? بازی مانند XB شامل x وجود داشته باشد به طوری که [XB]f زیر مجموعه? YB باشد.
به همین ترتیب میگوییم تابع f:X − > Y در مجموعه? A واقع در X پیوسته است رد صورتی که در تمام نقاط A پیوسته باشد.
قضیه : تابع f:X − > Y در X پیوسته است اگر و تنها اگر به ازای هر زیر مجموعه باز در Y مانند YB، مجموعه ی1-[YB]f زیر مجموعه? باز X باشد.
به طور خلاصه : فرض کنید X و Y دو فضای توپولوژیکی هستند. یک تابع بین X و Y را پیوسته میگوییم اگر تصویر معکوس هر مجموعه باز در X یک مجموعه باز در Y باشد. در واقع نشان میدهیم که هیچ شکستگی یا انفصال در تابع وجود ندارد.
مثال
R یک فضای توپولوژیکی است و مجموعههای باز در آن بازههای باز هستند. به طور کلی فضای اقلیدسی Rn یک فضای توپولوژیکی است و مجموعههای باز در آن گویهای باز هستند.
چند قضیه توپولوژی
هر بازه بسته با طول متناهی در Rn فشرده است. و معکوس
تصویر پیوسته یک فضای فشرده، فشرده است.
قضیه تیخونوف: حاصلضرب فضاهای فشرده، یک فضای فشرده است.
زیر مجموعه فشرده یک فضای هاسدورف، بسته است.
هر فضای متری هاسدورف است.
تثلیث زاویه از مسائل قدیمی و حل ناشده ریاضی است.
بزرگان ریاضی در طی دوران براحتی میتوانستند با کشیدن نیمساز، هر زاویه دلخواه را به دو بخش برابر قسمت کنند، ولی در سه قسمت کردن کمان عاجز بودند. بنابراین تثلیث یا سه بخش کردن زاویه یکی از مسائل عهد باستان گردید.
با آشنایی در حد مثلثات دبیرستانی میشود ثابت کرد این مسئله که جزء مسئلههای طرح شده در شاخه ساختمانهای هندسی است با کمک پرگار و ستاره (خطکش غیر مدرج) قابل حل نیست. ولی با حل یک معادله درجه 3 ساده میتوانیم دریابیم که بینهایت زاویه وجود دارد که با کمک ستاره و پرگار قابل تثلیث است، از جمله زاویههای 90 درجه یا 45 درجه؛ و بینهایت زاویه وجود دارد که با کمک ستاره و پرگار قابل تثلیث نیست، از جمله زاویه? 60 درجه. بنابراین، زاویه? 60 درجه را نمیتوان، به کمک پرگار و خطکش، به سه بخش برابر تقسیم کرد.
تثلیث زاویه، به همراه تربیع دایره، تضعیف مکعب و چندضلعیهای منتظم محاط در دایره از مسائل سهگانه عهد باستان است طی قرنها حل نشده باقیمانده بود.
با وجود اثبات امکان ناپذیری حل این مسئله و مسئلههای مشابه با استفاده از ستاره و پرگار، عدهای تلاش میکنند این مسائل را حل کنند. در اصطلاح ریاضیکاران ایرانی، این عده نوابیغ نامیده میشوند
شمارش و شمردن حالات انجام یک کار از زمانهای دور مورد بررسی بودهاست. گویا این کار بیش از همه در جنگها برای شمارش سربازان به کار میرفتهاست. در این قسمت روشهایی را برای شمردن بدون شمارش دانه به دانه معرفی میکنیم.البته باید یاد آوری کنیم که مبحث شمارش همه? ترکیبیات را در بر نمیگیرد بلکه ترکیبیات یکی از شاخههای بسیار وسیع عالم ریاضی است و شمارش بخشی از آن است. ابتدا از دو اصل پر کاربرد شروع میکنیم: 1)اصل ضرب:اصل ضرب میگوید که «اگر ما k شی داشته و هر یک را به m شی قسمت کنیم آنگاه mk شی خواهیم داشت».این اصل بسیار بدیهی است.حال ما آن را به صورتی پر کاربرد تر بیان میکنیم: «اگر پیشامدی به 2 پیشامد پشت سر هم تقسیم گردد و پیشامد اول به k حالت و پیشامد دوم به m حالت واقع شود آنگاه کل پیشامد به mk حالت واقع میشود.» مثال:شخصی قصد سفر از شهر A به شهر B و سپس شهر C را دارد.از شهر A به شهر B,پنج جاده و از B به C چهار راه وجود دارد.اگر از A به C جاده? مستقل وجود نداشته باشد به چند طریق میتوان از A به C رفت؟جواب:واضح است که بنا بر اصل ضرب پاسخ برابر 20 میباشد. این سادهترین نوع سوال ترکیبیات است. در اصل شمارش اگر کاری را بتوان به m طریق وکار دیگری را بتوان به nطریق انجام داد واگر این دو کار را نتوان همزمان انجام داد آنگاه این یا آن کار را میتوان به m+n طریق انجام داد